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Synopsis 

A model~is pro& for the reduction of orientation in spun fibers of two-phase polymer 
blends. This is based on the introduction of shear into an elongational flow by the presence of a 
second phase. The requirement is that the dispersed phase should not deform to the same extent 
as the continuous phase so that the flow field in the region of each particle is perturbed. Around 
an isolated droplet of minor component, the shear rate in the continuous phase goes through a 
maximum when the extension rate in the droplet is around half that macroscopically imposed. 
The dependence of orientation reduction on concentration of dispersed phase is fitted well by 
assuming that the flow 'field around a particle is disturbed over a distance two to  three times the 
particle diameter. In this case the maximum average shear rate around the particle is of the same 
order of magnitude as the elongation rate. The model pro@ is consistent with all the observed 
features of Orientation reduction during spinning of two-phase blends. 

INTRODUCTION 

It has recently been reported' that interesting and useful changes in fiber 
properties can result when small amounts of a selected, immiscible polymer 
are added to a polymer being melt spun. In particular, at  a given rate of fiber 
wind up, the molecular orientation in the fiber can be reduced substantially in 
the presence of the additive. Since orientation increases with wind-up speed 
(WUS), the result is a blend fiber whose properties resemble those of the pure 
fiber spun at lower WUS. For this reason the effect has been called wind up 
speed suppression or WUSS. The significance can probably be more directly 
appreciated when it is thought of as orientation suppression. It is important 
commercially since it permits increased productivity at the same spinning 

The effect has been studied in detail' and any mechanism proposed for it 
has to be consistent with the following key facts: 

1. In every case of WUSS the polymer additive is present as small (typi- 
cally 1 pm) droplets which deform into fibrils during passage down the 
threadline. 

2. A large range of immiscible polymers produce very similar WUSS in 
poly(ethy1ene terephthalate) (PET) despite chemical dissimilarity. Thus, liquid 
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crystal polymers, poly(ethy1ene oxide), nylon 6,6 and alkathene are all effec- 
tive. 

3. The effect is not peculiar to PET but has been obtained in nylon 6,6 and 
polypropylene fiber spinning. 

4. In PET the effectiveness of nylon 6,6 in WUSS increased with increasing 
viscosity of the nylon. 

5. The process controlling WUSS must occur in the threadline since WUSS 
can be induced by changing threadline conditions, in particular temperature, 
while keeping other parameters constant. 

6. There appears to be an optimum droplet size of around 1 pm for the 
minor phase which maximises WUSS. 

7. WUSS increases with increasing WUS. 
These key facts have been fully discussed' and no attempt at a comprehen- 

sive treatment is made here. Rather, this paper proposes a mechanism for 
WUSS and  disc^ its validity and implications. 

It is likely that WUSS is a rheological effect. Many authors have examined 
the shear rheology of two phase polymer blends. Types of behavior observed 
vary greatly and this is considered elsewhere.2 However, the relevance of such 
work to fiber spinning is limited since in spinning the flow is almost purely 
extensional. For rheologically complex fluids, such as polymer melts, it is at 
present impossible to predict behavior under extension from that in shear. 

This is borne out by our own shear viscosity data for PET/nylon 6,6 
blends.2 These did not display any features which could help us to understand 
WUSS. Indeed we now believe that the phenomenon underlying WUSS is 
peculiar to elongational flows. In shear the velocity gradient is perpendicular 
to flow while in extension it is in the flow direction. Elongational flow is 
irrotational but shear flow has a strong rotational component. Thus a macro- 
molecule will tend to rotate under shear and to become extended in the flow 
direction under elongation. It is the latter effect which leads to the develop- 
ment of molecular orientation during fiber spinning. At  a molecular level 
WUSS is the reduction of this orientation. 

When a small amount of one polymer is added to the melt of another it 
may change its rheology. Two classes of effect can be distinguished. The 
viscosity of the major phase may be changed by the complete or partial 
dissolution of the additive in it. Alternatively the presence of a second phase 
may modify the rheology of the fluid without changing the composition of the 
major phase. As has been discussed by Brody,' it  is difficult to reconcile an 
effect of the first type with the key features of WUSS. The second type of 
behavior would fit much more readily with his observations. It has been 
proposed' that WUSS results from the use of an additive whose elongational 
viscosity is lower than that of the polymer being spun. The suggestion is that, 
for a given macroscopic deformation, the dispersed phase elongates to a 
greater extent than the continuous phase and that this results in a transla- 
tional motion of one part of the matrix relative to another which leads to 
WUSS. 

The model proposed here falls into the same category being based on the 
physical presence of a second phase. It differs from Brody's model in that it is 
the presence of fibrils generated from the deforming drops rather than the 
deformation process itself which is believed to result in WUSS and that it 
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does not require that the dispersed phase should deform to a greater extent 
than the continuous one. 

The model puts the dependence of WUSS on particle deformation on a 
quantitative basis and predicts the form of its dependence on volume fraction. 
An explicit mechanism for the reduction of orientation during spinning of 
two-phase blends and hence for WUSS is suggested. 

THEORY 
Expressions have been derived3 for the rheological behavior of dilute 

suspensions of high aspect ratio particles in power-law fluids. These predict 
lower elongational viscosities than those of equivalent suspensions in Newto- 
nian fluids. The difference in behavior is a consequence of the shear field 
introduced around rigid, high aspect ratio, particles in a fluid undergoing 
extensional flow. If the fluid is shear thinning the stress arising from the 
presence of the particle is reduced. This provides the starting point for our 
model. 

Consider an isolated rigid fibril in a fluid subjected to steady elongation. 
The cylindrical coordinate system has its origin at  the centre of mass of the 
fibril. A t  sufficiently great distance from the fibril, say r 2 r&t, the flow field 
is unperturbed steady extension so that 

a V ,  . 
- = €  
az 

where V,  = the component of velocity in the z direction and i = extension 
rate which is a constant in steady elongation. 

The components of velocity are 

v, = iz ( 2 4  

(2b) 

v , = O  (2c) 

v =  - -  i r  

Close to the fibril, r < refit, the flow field is affected. In particular, V, = 0 at  
the particle surface. Comparison of this condition with eq. (2a) which holds for 
all r > r&t shows that V, must be a function of r for r < rdt, except at 2 = 0 
when V, = 0 for all r. 

For values of 121 > 1/2, where I is the length of the fibril, the flow field can 
be considered to be unaffected so that V, is a function of r only for r < rdt 
and 121 I 1/2. 

In this region we have 

aV,  p = - z o  
ar 

while outside it we have, by eq. (2) 

p = 0  

where i. is the shear strain rate. 
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Thus, the presence of a rigid fibril introduces shear into what would 
otherwise be a completely irrotational flow. In order to calculate V, as a 
function of r, the constitutive equation for the fluid is needed. For a polymer 
melt this is far from being a trivial problem. At constant Z the velocity 
profile, V, vs. r, might, for instance, be that shown in Figure l(a) or it might 
be different in detail. We do know, however, that V, would vary monotoni- 
cally from zero at r = 0 to iZ [by eq. (2a)] at r 2 rkt. In Figure l(a) P is a 
function of r. A reasonable approximation to this and to other possible 
velocity profiles is Figure l(b). Here we assume a constant value of a t  
r c rait. This will allow us to calculate the effective shear rate around the 
fibril while remaining ignorant of its detailed dependence on r. 
As can be seen from Figure 1(b), 

av, iz 
P = - = -  

a r  rcrit 
(4) 

rc,+t may itself be a function of 2, but, in order to calculate an effective 
average shear rate, we assume it is a constant. Thus, there is a shear field 

", I 

t 
rcrit 

U' r 

Fig. 1. Plots of V,  vs. r at constant z for an infinitely thin fibril in an extending fluid: (a) 
posible form for true velocity profile; (b) approximation to velocity profile. 
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around the fibril whose magnitude increases from zero at the center of mass of 
the particle to a maximum of 

i1/2 r , t  

The average over the length of the fibril of the effective shear rate is, from eq. 
(41, 

i1/4rdt 

Now, consider the case where the fluid is a polymer melt. The effect of 
elongation on a polymer molecule is to extend it in the 2-direction. Under 
shear, on the other hand, a macromolecule will rotate. The effect of introduc- 
ing shear into an extensional flow will be to take the molecular orientation out 
of the flow direction. If the macromolecule is in a fiber being spun the net 
result of the introduction of shear is a lowering of molecular orientation along 
the fiber axis, in other words, WUSS. 

It has been demonstrated that shear could be produced if high aspect ratio, 
nondeformable fibrils, oriented in the flow direction, were present during fibre 
spinning; WUSS could result. In fact, WUSS is produced by the presence of 
deformable droplets of an immiscible polymer. Such inclusions can introduce 
shear by essentially the same mechanism as rigid fibrils provided that the 
particles do not deform to the same extent as the matrix. In steady elonga- 
tional flow a polymer melt B is extended at  a constant rate i. If a droplet of a 
second polymer A is present in B, it may deform into a fibril at a rate i’. In 
aEne deformation i’ = i and the velocity field in B is completely unaffected 
by the presence of A. Clearly in this case no shear results from the presence of 
a second phase. However, i’ may not equal i and shear can be introduced. A 
coordinate system with origin at  the center of mass of A is again selected and 
the deforming particle is approximated by a cylinder of radius r’ and length 1. 

Within A and by analogy with eqs. (1) and (2) 

1 increases with time according to 

so that 

where 

1 = loexp( i‘t) 

l o = l  a t t = O  

= diameter of undeformed droplet 
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Far enough away from the particle, say r > rccrit, the flow of B is unaffected by 
the presence of A so that V, = iZ. However, in fluid B immediately adjacent 
to the particle, i.e. at r = r‘ and for -1/2 I Z I 1/2, V. = i‘Z. As long as 
i # if there will be a finite shear rate i. = aE/dr  in this region. 
As discussed for the case of a rigid fibril, the details of the velocity profile 

are unknown but this does not really matter since it is the effective shear rate 
which is sought. The flow field is therefore approximated by assuming that 9 
is independent of r for r’ < r < rent. In this case, within the region around 
the particle, B is subjected to a shear rate 

(i  - i’)Z 3 =  
rccrit - r’ 

p is zero at the center of the particle and increases along the length of. the 
fibril to a maximum of 

If IpI is averaged along the length of the particle, then substitution of eq. (7) 
into eq. (9) yields 

I(i - i’) (loexp( i’t) 

4(rcnt - r‘) 
- 

Yave - 

The absolute value is used because, whereas i.( z )  = - i.( - z), the sign of p is 
immaterial with respect to its effect in lowering orientation. In this context 
only its magnitude is important. 

Thus, fluid B in the volume T . r& . 1 around A is subjected to an effective 
average shear rate As noted above, shear can reduce molecular orienta- 
tion and so provide a mechanism for WUSS. Either subaffine (i’ < i) or 
superafEne (i’ > i) deformation could lower orientation. Only in the case of 
affine deformation when i = E“ is Yav, zero. 

Since the aspect ratio of the fibril increases steadily, i.,,, is a function of 
time or, equivalently, of total imposed strain c = it. Some knowledge of the 
form of r&, - r’, the depth into the fluid surrounding a particle over which 
shear occurs, is required in order to determine conditions which maximize Yave 
at a given total strain e. The possibilities that rkt - r’ is independent of r’ 
and therefore of i’ and that r&t - r’ is proportional to r’ are considered. 
Since either sub f f i e  or superffie deformation can lead to finite i.,,,, four 
cases are dealt with. 
(a) 1’ > 1, r,,, - r‘ Constant.. 

(i‘ - i)loexp( i’t) - 
Yave - 

4( rcnt - r’) 

Differentiating this with respect to i‘ (which is a measure of the extent of 
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particle deformation), we obtain 

a T~~~ 
ail 4 k n t  - r’) 

Z,exp( i’t) [ (i’ - i ) t  + 11 
-- - 

> O  

so that  pave increases continuously with increasing i. 
(b) i’ > i, r c ~ t  - r’ = kr‘ Where k = Constant. 

(i’ - i)Z,exp( i’t) 
4kr’ 

- 
Yave - 

Now, r‘, the radius of the fibril, depends on total strain as 

r’ = r;exp( -i’t/2) 

where r; = r‘ when t = 0 

= Z,/2 for an originally spherical drop 

so that  

ai.,,, exp(3/2irt)[l + 3/2(i’ - i ) t ]  -- - ai’ 2k 

> O  

and again yave increases continuously with increasing d’. 
(c) i’ < i, refit - r’ Constant. 

( i  - i’)Z,( i’t) 

4( r c n t  - r’) 
- 

Yave - 

a qave [ ( i - i’) t - 11 Z,exp( i’t ) 
-- - 

a i  4kCrit - r’) 

and Tave goes through a maximum when 

( i  - i’)t = 1 

(d) i‘ -= i, rc, - r’ = kr‘. 

(i - i’)exp(3/2d’t) 
2k 

- 
Yave - 
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norrnalised 1 ave I 

norrnalised <’ 
Fig. 2. Plot of [4(rc,, - r’)/Z,,i]Tave vs. <‘/i at  constant total strain c = 3. 

and yave goes through a maximum when 

(i - i’)t = 2/3 (17) 

For a given i the value of i’ which maximizes i.,,, depends on t and therefore 
on the total strain. For instance, at  a total strain i t  = 3 and assuming that 
rc’crit - r’ is a constant, the shear rate around a particle depends on the rate of 
deformation as shown in Figure 2. Since a rigid particle will still give rise to 
shear, there is a finite shear rate at i’ = 0 and yave = 0 only when i’ = i. On 
either side of this point, shear rate rises rather steeply so that some WUSS 
may be possible even for deformations rather close to the f ine .  

WUSS is essentially Orientation suppression. Before it is observed, there 
must be significant orientation so that some minimum value of i is necessary. 
This will, of course, depend on the system considered. Reduction in orienta- 
tion will depend on the relative values of yave and i. Thus, if.  i >> i.,,,, then 
the shear field will have little effect on orientation on the timescale on which 
stretching, and, therefore, orientation occurs. On the other hand, when i e 
yaVe, the extensional &tress will be completely averaged out in a coordinate 
system rotating with the macromolecule. Thus, no orientation will occur. The 
sensitivity of molecular orientation to shear will be greatest when yave - i. 
Since molecular orientation is not wholly eliminated in systems manifesting 
WUSS, they are not in the regime yave >> i. This being the case, it  ought to be 
possible to increase WUSS by maximizing yave. One approach would be to aim 
for maximum superffie deformation. Unlike subafEne deformation, this is 
not commonly observed and the control of subaffine deformation seems a more 
promising route. 

The condition maximizing yave depends on total strain which increases down 
the threadline in fiber spinning. In order to promote WUSS, we need to 
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maximize shear in that part of the threadline where most of the orientation 
takes place. This is around the region where 

where V = threadline velocity, V, = initial velocity on exit from the die, and 
y = final velocity = WUS. 

Typically y(V0 is in the range 10-100 so that i.,,, should be maximized 
when V/Vo is in the range 5-50. Now, 

I 

E = i t  = In V/Vo .- 1.6-3.9 (19) 

at this point. Substituting E = i t  into eq. (15) yields 

(20) i - i f  = i/E 

so that by eqs. (19) and (20) if which maximizes qaVe lies in the range 0.4i-0.7i. 
The sensitivity of the condition maximizing faVe to the form of r&t - r f  is 

not terribly great. For example, at  a total strain E = 2 eq. (17) leads to 
if = 2i/3 while eq. (15) leads to if = i/2. Similarly, when E = 3, eq. (17) yields 
if = 7i/9 while eq. (15) gives if = 2i/3. The actual behavior of r c ~ t  - r f  is not 
expected to be fa r  from the two possibilities considered. WUSS should 
therefore be maximized at  levels of deformation of 1/2 to 3/4 that of the fiber 
as a whole. 

In order to evaluate the actual maximum value of i.,,, by substituting 
if - 0.4-0.7i into eq. (lo), it is necessary to estimate r , ,  - r f .  Until this is 
done, it is not known whether shear rates attainable during spinning are 
sufficiently high that they can reasonably be expected to give rise to WUSS. 

So f a r  only the shear field around an isolated particle in a fluid subjected to 
extension has been considered. In reality during the spinning of fibers from 
blends, many particles are involved. At low enough volume fraction of the 
minor phase A, the particles can be considered to be isolated from each other. 
In this situation there will be a finite volume of continuous phase, B, which 
undergoes shear around each particle. The total volume of B which is affected 
will simply be the sum of such volumes and will be proportional to 'p, the 
volume fraction of A. Orientation suppression should depend on the propor- 
tion of B in which there is shear. Thus WUSS is expected to increase with 'p. 

However, as 'p increases, overlap will occur between those sheared volume 
elements of B around neighbouring fibrils of A. This means that the volume of 
B sheared will increase less rapidly with 'p. 

Approximating the deforming fibril by a cylinder, the ratio R of the volume 
element around a particle in which shear occurs to the volume of the particle 
is 

Substituting 
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where b is the ratio of the depth into B over which shear occurs to the 
diameter of the fibril, into eq. (21) gives 

R = 4b2 + 4b + 1 (23) 

If the system is divided into elements of volume Ru, where v is the volume of 
a single particle, then any such element containing one or more particles is 
sheared. This allows overlap between sheared volumes around adjacent fibrils 
to be taken into account. The aim is to ensure that the same volume is not 
counted more than once when the total volume sheared is calculated. 

This can be done rather simply using the Poisson distribution. If particles 
are distributed randomly among an arbitrary set of volume elements then the 
probability, P(n),  of a volume element containing n particles is 

where p = average number of particles per volume element. 
For elements of volume Ru we have 

P = 'pR (25) 

There are limits to the use of the Poisson distribution. At  very high cp it 
permits a hi te  value of P(n) where n > R,  i.e., it  allows a greater number of 
particles into an element than the number whose combined volume is that of 
the element. This is obviously physically impossible. 

At the volume fractions relevant to WUSS, this problem does not arise, and 
the Poisson distribution describes the behavior of real systems well. The 
volume fraction 'psh of the material in which shear occurs is the fraction of 
elements of volume Ru containing one or more particles. This is particularly 
easy to calculate since 

C P ( n )  = 1 
n 

so that 

'psh can be Calculated as a function of cp for any value of R and therefore for 
any value of b [from eq. (23)]. 

WUSS is expected to be a function of yave but for a given system and a 
given set of spinning conditions yave should be more or less constant and 
WUSS should then increase with 'psk Figure 3 plots WUSS, as characterized 
by reduction in birefringence, against nylon concentration in PET. The data 
are taken from Ref. 1. The two solid curves are 'p& vs. 'p calculated from eqs. 
(27) and (23) for b = 2 and b = 3. This corresponds to the depth into the PET 
of the shear field being 2 or 3 times the fibril diameter. The calculated curves 
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%Reduction in %volume 
birefringence sheared 

Fig. 3. Plot of WUSS vs. nylon content (data points) in PET and of volume fraction sheared 
versus concentration of minor component (solid curves) according to our model. 

have been normalised so that (psh = 1 corresponds to the maximum observed 
birefringence reduction. This is the only arbitrary measure employed. The 
curves fits the data points very well. This implies that the simple relationship 
WUSS a (psh holds. I t  is physically reasonable that the extent of WUSS 
should be proportional to the volume fraction sheared as long as pa,, is 
independent of (p& Figure 3 indicates that any change in effective shear rate 
occurring on overlap of shear fields round adjacent particles is too small to 
have a significant effect on WUSS. It  is physically reasonable that the data 
are best fitted with the shear field around a particle extending 2-3 times the 
particle diameter into the matrix. 

The self-consistency of the approach is now tested by calculating the order 
of magnitude of the maximum value of Tave expected from the value of 
refit - r’ corresponding to b = 2.5. If this is negligible, the model cannot 
predict WUSS. 

Substituting eq. (22), with b = 2.5, into eq. (lo), we obtain 

[(i - i’ll,exp(i’t) 
20r’ 

- 
Yave - 

Equations (28) and (12) yield 

From eqs. (19) and (20) it  was calculated that, at  a total strain i t  in the region 
1.6-3.9, yave would be maximized with i‘ in the range 0.4;-0.7i. Substituting 
i’ = 0.5; into eq. (29), together with i’t = 0.5it - 1.5 yields 

TaVe = 0.5i (30) 

The model therefore predicts shear rates of a sufficiently high magnitude to 
give rise to WUSS. When WUSS is plotted against volume fraction at  
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constant WUS etc., as in Figure 3, i t  is a t  constant i and WUSS is then 
proportional to the volume fraction sheared. The same qualitative dependence 
of WUSS on ‘p would hold under different conditions, but the high cp limit to 
WUSS would vary depending on 

EVIDENCE SUPPORTING THE MODEL 

The phenomenon described should occur during elongation of suspensions of 
high aspect ratio particles or particles which do not deform affinely. However, 
significant effects are expected only when extension rates are high enough for 
molecular orientation. It has been found4 that low volume fractions of a 
second fluid have no detectable affect on the elongational flow of a poly(ethy1- 
ene oxide) (PEO) solution. This work was carried out on the Sangamo 
elongational viscometer on which extension rates were limited to less than 100 
s-’. Very little molecular orientation is likely a t  these rates in a compara- 
tively low viscosity medium. Much higher extension rates are accessible on the 
cross-slot device of Keller and Odel15 a t  Bristol University. Furthermore, the 
Bristol group can measure birefringence and thereby monitor orientation of 
macromolecules in solution directly. 

In dilute solution, the onset of birefringence takes place when i - 1 / ~ ,  
where T is the relaxation time of the isolated macromolecule. T depends on 
MW so that for a polydisperse material birefringence does not increase 
stepwise a t  a critical value of i. Instead, birefringence vs. i is sigmoidal in 
form and the increase in birefringence becomes less abrupt the broader the 
MW distribution. At higher polymer concentrations entanglements between 
molecules complicate the behavior, and it can no longer be interpreted in 
terms of a distribution of simple T values, each corresponding to a particular 
MW. Nevertheless, birefringence increases sigmoidally with r‘. Thus, a t  low i 
there is very little molecular orientation, and most of the orientation takes 
place over some critical range of i. 

Dr. Ode11 kindly undertook to examine two fluids for us in his cross-slot 
device. These were a 3% solution of 900,OOO MW PEO in concentrated sucrose 
solution and a 3% emulsion of silicone oil in the same. Intensity of birefrin- 
gence is plotted vs. i in Figure 4 for both fluids. There is a small but 
significant difference between the two curves. 

At a given strain rate the behavior of the emulsion resembles that of the 
solution a t  a lower extension rate. Since the solution is identical to the 
continuous phase of the emulsion, the silicone oil brings about “strain rate 
suppression.” Equivalently, the birefringence a t  a given strain rate is reduced, 
demonstrating orientation suppression. Our model can explain this observa- 
tion. During elongational flow in the device the oil droplets would deform into 
fibrils. Provided that deformation was not affine, this would generate shear in 
the surrounding PEO solution thereby reducing orientation. 

Goddard predicts3 that, a t  a given extension rate, the tensile stress in a 
suspension of fibrils should be lower if the fluid is shear thinning than if it is 
Newtonian. His argument is based on the introduction of shear so that stress 
is relatively low in shear thinning systems. Such behavior would parallel what 
we describe in terms of orientation suppression. On the other hand it would be 
restricted to shear thinning liquids. This limitation would not apply to 
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Intensity of 
birefringence 

I 
1 x 1 0 ~  5x10’ extension rate I? 

Fig. 4. 
silicone oil. 

Plots of birefringence versus i for PEO solution and for PEO solution containing 

orientation suppression. Goddard’s theoretical treatment is in qualitative 
agreement with published work6*’ on fiber-filled melts. He cites elongational 
viscosity measurements on high density polyethylene (HDPE) both unfilled 
and filled with glass fiber. In pure HDPE, elongational viscosity was indepen- 
dent of i while in the filled HDPE it was a decreasing function of i .  

Interesting and relevant observations have been made on the fiber spinning 
of blends by Min et Blends of polystyrene (PS) and polyethylene (PE) 
were melt spun and the orientation in the PE phase measured by WAXS. 
Orientation in the blends was lower than that in PE spun at  the same stress. 
The authors suggest that the PS phase bears a disproportionately high part of 
the load so that the stress on the PE phase is reduced. This argument may 
well apply at higher PS levels where there is some continuity of the PS. 
However, substantial orientation reduction occurs at  10% PS when the PS is 
the dispersed phase. Thus, in Figure 20 of Ref. 8, the orientation of PE 
increases less rapidly with spinline stress when the PE contains 10% PE. 
Orientation reduction is clearly demonstrated. The authors recovered the PS 
fibrils from the spun blend and measured their diameters. Deformation was 
s u b f f i e  and approached a5ne deformation with increasing draw down ratio. 
Thus orientation suppression from subaffine deformation is convincingly dem- 
onstrated. Furthermore, spinline stress increases with draw down ratio so that 
as stress increases deformation increases towards the a5ne. The reduction in 
orientation when 10% PS is added to PE reported by these authors appears to 
go through a maximum as a function of spinline stress. Our model predicts 
precisely this behavior since, i.,,, will at  first increase then fall off as affine 
deformation is approached. A similar experiment was carried out by the same 
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workers9 on blends of PP with nylon 6. They found that the addition of 25% 
PP left nylon orientation unchanged. However, in this case the PP deformed 
affinely so that again the behavior is exactly as predicted by our model. 

DISCUSSION 

The introduction of shear through nonaffine deformation of the dispersed 
phase is consistent with and provides an explanation for the following ob- 
servations : 

1. All system manifesting WUSS are two phase blends and in all cases the 
dispersed phase deforms into fibrils during spinning. The presence of a second 
phase is an essential feature of our model. Although shear is introduced 
around particles which do not deform, the volume of continuous phase 
sufficiently close to a spherical particle to be influenced by it would be 
insignificant a t  the low volume fractions relevant to WUSS. Deformation into 
fibrils is then a prerequisite for WUSS. 

2. The effect is rather insensitive to the chemical nature of the minor 
components. Our model predicts that it is the extent of relative deformation 
which controls WUSS. The physical properties of the components, rather 
than their chemical properties, are important. 

3. For nylon 6.6 in PET WUSS increased with nylon viscosity. The particle 
size of the dispersed phase will increase with its viscosity. This could result in 
increased deformation. On the other hand, the tendency of a particle to 
deform may decrease with increasing viscosity. In either case the extent of 
deformation will be a function of particle viscosity. Since we predict WUSS 
will go through a maximum at  some relative deformation, WUSS could either 
increase or decrease with minor phase viscosity. To predict the direction of 
the change, it is necessary to know the prevailing extent of deformation. 

4. WSS depends on conditions in the threadline. Lowering the threadline 
temperature can induce WUSS. According to the model, the mechanism 
underlying WUSS operates in that part of the threadline where orientation 
increases most. A drop in threadline temperature is likely to affect the relative 
deformation of the fiber components. This could increase WUSS to a detect- 
able level. 

5 .  There seems to be an optimum particle size which maximizes WUSS. 
Since the particle size affects deformation, a maximum in WUSS a t  some 
optimum subaffine deformation and therefore a t  some optimum particle size is 
predicted. 

6. WUSS increases with increasing WUS. As reported in the literature8 
and discussed above, WUSS appears to go through a maximum with increas- 
ing WUS in the system PS/PE. In this case deformation approached affine 
deformation a t  higher WUS so that our theory would predict a maximum. If 
deformation is below the optimum level, WUSS will increase with WUS. 

Thus, all the key features of WUSS can 5e interpreted via our model in 
physically reasonable ways. The essence of our model is the introduction of 
shear into an extensional flow by the presence of a second phase which does 
not deform a t  the same rate as the matrix. Affine deformation will produce no 
WUSS. Superaffine deformation would give the maximum scope for increased 
orientation suppression but is itself unlikely. On the other hand subaffine 
deformation is a common occurrence, and this can lead to orientation suppres- 
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sion. Optimization of WUSS is therefore a practical possibility via control of 
s u b f i n e  deformation. 

Conditions maximizing WUSS themselves depend on WUS but for typical 
spinning conditions correspond to deformation such that the elongation rate 
of the particle is around one half to three quarters of that of the matrix. The 
model provides a physically sound mechanism for WUSS. I t  predicts the form 
of its dependence on additive volume fraction. Furthermore, i t  explains the 
dependence of the high volume fraction limit to WUSS on both WUS and the 
nature of the system. 

The author wishes to thank Dr. G. Odell of Bristol University for making measurements of 
strain rate dependence of birefringence on fluids of interest to us and is grateful to ICI 
management for permission to publish this paper. 

APPENDIX NOMENCLATURE 

ratio of extent of shear field around fibril to fibril diameter 
length of fibril or deforming particle 
diameter of undeformed particle = 1 at t = 0 
ratio of sheared volume to particle volume 
cylindrical coordinate system centered on isolated particle; in fiber spinning Z 
corresponds to direction of flow 
value of r above which the flow field around a particle is unaffected by its presence. 
radius of deforming particle 
threadline velocity 
initial threadline velocity 
final threadline velocity 
velocity in Z( r, 0)  direction 
volume of single particle 
wind up speed 
wind up speed suppression 
shear rate around particle = a%/ar 
the average magnitude of the shear rate in the region around a particle 
total strain; approximating i as being constant yields c = i t  
extension rate in continuous phase = a E / a z  
extension rate in deforming particle 
average number of particles per volume element 
volume fraction of additive 
volume fraction subjected to shear 
relaxation time of an isolated macromolecule 
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